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Why a statistical analysis is needed 
 
This document1 presents the mathematics and statistics of examination 
marking and re-marking, so providing an analytical explanation of much of 
the data on the reliability of school examination grades, as presented in two 
recent Ofqual reports2. If the marking of GCSE, AS and A level scripts were 
precise, such that the same mark would be given to the same script by all 
examiners (as is the case for examinations based on unambiguous multiple-
choice questions), then no statistical analysis would be needed: any 
originally-given mark m  would be confirmed by the re-mark m* given by any 
other examiner. For examinations largely structured around more open-
ended questions, and especially for those that require essays as answers, 
then a re-mark m* by another examiner, as equally qualified and as equally 
conscientious as the first, might result in the same mark m  as the original 
mark, but might not: the re-mark m* might be a number of marks higher than 
the original mark m, or it might be a number of marks lower.  
 
Given that, for any original mark m, there are a number of different possible 
values that the re-mark m* might take, any questions concerning any 
relationships between the original mark m  and the re-mark m*   have to be 
expressed in probabilistic terms, as exemplified by questions such as: 
 

▪ For a given value of the original mark m, what is the probability that the 
 re-mark m*   will be the same as the original mark m? 

▪ For a given value of the original mark m, what is the probability that the 
 re-mark m*  will be h marks different from the original mark m, such 
 that m* = m + h? So, for example, for an original mark m  = 59, what is 
 the probability that the re-mark m*  is 61, two marks higher  (implying 
 that h = 2 so that m*  = m  + h = 59 + 2 = 61)? 

 
Since these questions enquire about probabilities rather than certainties, any 
answers to these questions must be based on a statistical analysis of marking 
and re-marking, as presented here. Much of the analysis is therefore 
mathematical, and so the discussion presented assumes some familiarity with 
mathematics, and mathematical symbols and representations. Sometimes a 
symbol will be used to represent a quantity, or variable, in general: so, for 
example, the symbol m represents any mark that might be given to any script 
by any examiner. There are occasions, however, when it is helpful to 
represent a specific instance of that quantity, in which case the variable 
symbol will be associated with the † symbol: accordingly, the composite 
symbol m†  represents a specific mark (say, 59) given to a particular script. 
 
 

 
1 This document is a revised and improved version of a document originally posted on 14th 
July 2017; it is also the Appendix to a comprehensive study of grade (un)reliability, available 
here. 
2 Marking Consistency Metrics (November 2016), and Marking Consistency Metrics – An 
update (November 2018),  

https://docs.wixstatic.com/ugd/7c5491_aa31710098644208bbc9d5743fdcd015.pdf
https://docs.wixstatic.com/ugd/7c5491_c78147b6365344069c96defb24b13e22.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/681625/Marking_consistency_metrics_-_November_2016.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/759207/Marking_consistency_metrics_-_an_update_-_FINAL64492.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/759207/Marking_consistency_metrics_-_an_update_-_FINAL64492.pdf
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Probability distributions 
 

Measuring probabilities – the probability distribution t(m) 
 
Suppose that a single script is marked once by each of 75 different equally-
qualified and equally-conscientious examiners. Suppose further that 6 
examiners give a mark m = 56, 10 give m  = 57, and 9 give m = 61. The overall 
outcome for all 75 examiners is shown Table 1. 
 
Table 1: Marks given by 75 different examiners to the same script 
 

Mark m 

Number of     
examiners giving mark 

m 

Percentage of 
examiners giving 

mark m 

Probability t(m) that 
an examiner will 

give mark m 
Actual Cumulative 

   ≤ 53 0 0 0.00% 0.0000 

54 0 0 0.00% 0.0000 

55 1 1 1.33% 0.0133 

56 3 4 4.00% 0.0400 

57 8 12 10.67% 0.1067 

58 15 27 20.00% 0.2000 

59 24 51 32.00% 0.3200 

60 18 69 24.00% 0.2400 

61 6 75 8.00% 0.0800 

62 0 75 0.00% 0.0000 

  ≥ 63 0 75 0.00% 0.0000 

Total 75 75 100.00% 1.0000 

 
 
In this table, the percentages are calculated based on the total of 75 = 100%, 
and the probabilities are defined by reference to the corresponding 
percentages, but expressed as a number between 0 and 1. 
 
If 100 further examiners were to mark that script, what marks would be 
given? This question cannot be answered with certainty, but if the new 
examiners are as well-qualified and as conscientious as each of the previous 
75, then the data in Table 1 suggests that it is extremely unlikely (but none 
the less still possible) that any new mark would be 54 or lower, likewise 62 
or higher; a reasonable inference is that about 20 would give 58, and about 
32 would give 59, in accordance with the probabilities as shown. The set of 
probability figures defines a ‘probability distribution’, as represented 
graphically by the histogram shown in Figure 1: 
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Figure 1: The probability distribution t(m) for the data shown in Table 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Formally, this distribution is described by a ‘mathematical function’ t(m), 
where the value of t(m) for any specific mark m is as shown in Table 1, and 
as represented by the height of the corresponding column in Figure 1. 
Distributions of different shapes will be associated with different functions, 
all of which have different shapes, but all generically written as t(m). 
 
A feature of a distribution of probabilities is that the sum of all the column 
heights is 1.00, or 100% - expressed mathematically as 
 

 
 
In this expression, the symbol        indicates  a  summation over all possible 
 

values of m.IIn principle, this range of marks extends from 0 to 100; since in 
this particular example the values of t(m) are all zero for values of m ≤ 54 
and m ≥ 62, the effective range of the summation is from mmin = 55 to           
mmax = 61. 
 
Since a probability of 1 = 100% is a certainty, the ‘real world’ interpretation 
of this is that there is in essence an absolute certainty that a given mark m 

is within the range from mmin = 55 to mmax = 61, and that the probability that 
a mark m might be outside this range is less than, say, 0.0001 = 0.01%. 
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Three different measures of a distribution’s centre 
 
For any distribution, it is helpful to identify a measure of a ‘representative’ 
member of that distribution, and so statisticians define 
 

▪ the mode M; 
▪ the mean ⟨M⟩; 
▪ the median M. 
 
Each of these specify a single number towards the centre of the 
corresponding distribution, and with reference to the data shown in Table 1, 
and as illustrated in Figure 1 : 

 

▪ The mode M corresponds to the mark m given by more examiners than 
 any other mark, as identified by the peak of the corresponding 
 distribution. Accordingly, for the example shown, M = 59. 
 

▪ The mean ⟨M⟩ is the arithmetical average, defined mathematically as 
 

 
 

 in which the product m t(m) weights each mark m by the probability 
 t(m) of that mark’s occurrence. For the example shown, the mean ⟨M⟩ 
 computes to ⟨M⟩ = 58.13. 
 

▪ The median M is the ‘half-way’ mark, defined such that this mark is equal 
 to, or greater than, that given by one-half of the examiners; by the 
 same token, it is also the mark equal to, or less than, that given by the 
 other half of the markers. Operationally, the median can be determined 
 by listing all the individual examiners, and the corresponding mark 
 given, in ascending order of the mark, and then identifying the mark 
 given by the examiner in the middle of resulting list. In the example 
 shown in Figure 1 , there were 75 examiners: the ‘middle’ examiner is 
 therefore the 38th, and, as can be seen from the ‘cumulative’ column 
 in Table 1 , among the 24 examiners who gave the script 59 marks. The 
 median of the distribution shown in Figure 1 is therefore M = 59. 
 

In this example, the median M = 59 happens to be have the same value as 
the mode M = 59, but a value different from the mean ⟨M⟩ = 58.13. For some 
distributions, all three measures have the same value, in which case a 
graphical representation of the distribution is left-right symmetrical. For 
some distributions, the median M, mode M and mean ⟨M⟩ have different 
values, in which case a graphical representation of the distribution is 
skewed, to a greater or lesser extent, with the mode M either towards the 
right (as is the case for the distribution shown in Figure 1 ), or towards the 
left. 

áMñ  =  

 m t
m

å (m)

 t
m

å (m)
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Two different measures of a distribution’s width 
 
The median M, mode M and mean ⟨M⟩ are three different measures of the 
centre of a distribution, but any one of these measures, though informative, 
gives no indication of the distribution’s shape – and in particular, whether 
the distribution is narrow or broad. This is important, for the median M is 
much more informative when associated with a measure of the corresponding 
distribution’s width than as a number by itself. As an example, if a 
distribution has a median M = 59, and a minimum mark of 55 and a maximum 
mark of 61, then all the marks are closely clustered around the median          
M = 59; in contrast, a different distribution, also of median M = 59, but with 
a minimum of 45 and a maximum of 71, is much broader. If the only 
knowledge is that the median M = 59, then the range of marks might be from 
58 to 60 – or from 8 to 100. 
 
Accordingly, two measures of the width of a distribution are 
 
▪ the standard deviation, σ; and 
▪ the end-to-end range N. 

 
The standard deviation σ is defined mathematically as 
 
 
             

                                        σ2   
 
 
In this expression, the difference (m – ⟨M⟩) represents the distance between 
any mark m and the mean ⟨M⟩, and so is a larger number for a mark m further 
from the mean than for a mark m closer in. Since the difference (m – ⟨M⟩) can 
be both positive (for marks m greater than the mean ⟨M⟩) and negative (for 

marks m smaller than the mean ⟨M⟩), the square (m – ⟨M⟩)2 is always positive. 
The standard deviation σ therefore represents a measure of the average 
actual distance of a mark m from the mean ⟨M⟩, this being a measure of the 
width of the corresponding distribution. For the example shown in Figure 1 , 
σ computes to 1.313. 
 
The end-to-end range N is simpler to identify and compute: any distribution 
of marks will extend from a minimum mark mmin to a maximum mark mmax, 
and the end-to-end range N is defined as 
 

N  = mmax  – mmin 
 
In the example shown in Figure 1 , mmin = 55 marks and mmax = 61 marks, from 
which N  = 61 – 55 = 6 marks. 
 
The end-to-end range N is a measure of the distance between mmin and mmax, 
the total range of marks over which the distribution extends. Note that a 
count of the number of individual marks included in the distribution is always 

  =  
 ∑ 

m
(m – áMñ)2 t(m)

 ∑ 
m

t(m)
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N + 1, one mark greater than the end-to-end range N – in this example, the 
end-to-end range N = 6 marks, but there are  N + 1 = 7 marks included in the 
distribution itself (55, 56, 57, 58, 59, 60 and 61). 
 

Other representations of the distribution t(m) 
 
As shown in Figure 1 , the distribution t(m) extends from mmin = 55 marks to 
mmax = 61 marks, with median M† = 59 marks, where the composite symbol 
M† indicates that this median is specific, being the median of that particular 
distribution t(m) of which the mark m is a member. 
 
If a new variable n is defined such that 
 

m = M† + n 
 
then n represents the number of marks by which any mark m is greater than 
the median M† of the distribution t(m) of which the mark m is a member. So, 
for example, mmax = 61 corresponds to n = 2 (61 = 59 + 2), and mmin = 55 
corresponds to n = – 4 (55 = 59 – 4). For the distribution of Figure A1, for 
every value of m from mmin = 55 to mmax = 61, a total end-to-end range                
N = 61 – 55 = 6 marks, there is a corresponding value of n from nmin = – 4  to               
nmax = 2, this being a total range of 2 – (– 4) = 6 marks = N also. The 
distribution represented as t(n), expressed in terms of the variable n rather 
than the variable m, therefore has the same shape as the distribution t(m), 
but extends from nmin = – 4  to nmax = 2, with a median M = 0, as shown in 
Figure 2. 
 
 
Figure 2: The distribution t(n) 
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To verify this, consider the specific value n = – 3, for which, according to 
Figure 2, t(n) = t(– 3) = 0.04. Since m  = M† + n, then, for M† = 59, m  = 59 – 
3 = 56. According to Figure 1, t(m)= t(56) = 0.04, so demonstrating that t(n) = 
t(m). This is also true for all other values of n, and the corresponding values 
of m, so proving that the distributions t(m) and t(n) have identical shapes, but 
with t(m) straddling the median M† = 59, as shown in Figure 1, and t(n) 
straddling the median M = 0, as shown in Figure 2. 
 
One further distribution is of interest, that represented by the function        
t(– n). To determine the shape of t(– n), consider the specific value n = + 1. 
When n = + 1, the value of t(– n) is given by the corresponding value of t(– 1) 

as shown in Figure 2 (and Table 1), namely 0.24. The same applies to all 
other values of n, and so the shape of the distribution t(– n) is as shown in 
Figure 3, which, as can be seen, is the left–right mirror image of the shape 
of the distribution t(n) as shown in Figure 2. 
 
 
Figure 3: The distribution t(– n)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If the distribution t(n) is left-right symmetrical (as, in practice, it often is), 
then the shapes of the two distributions t(n) and t(– n) are indistinguishable, 
for the symmetry of t(n) implies that it is its own left-right mirror image; if, 
however, t(n) is not symmetrical (as in Figure 2), then t(n) and t(– n) can be 
distinguished, as shown by comparing Figures 2, for t(n), and 3, for t(– n). 
 
As will be shown, the distributions t(n) and t(– n) play an important role in 
the statistics of marking and re-marking, and provide the mathematical 
foundations of the measurement of grade reliability. 
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Three important probability distributions 
 
Three statistical probability distributions play an especially important role in 
the analysis of marking and re-marking. These are briefly introduced here; 
each will be discussed in more detail later: 
 

▪ The generic panel distribution, represented mathematically as T(n). 
 This distribution defines the distribution of marks given to the same 
 script by each examiner drawn from a panel of equally-qualified, 
 equally-conscientious, examiners. This distribution answers the 
 question “If a number of different examiners were each to mark the 
 same script, what is the probability that the mark m given by any one 
 examiner is n marks greater than the median M† of the distribution of 
 all marks given to that script, such that m  = M† + n?”. In this question, 
 the parameter n may take both positive and negative values, as well 
 as a value of zero, so that the mark m  can be greater than, less than, 
 or equal to the median mark M†. This median M† is important in that, 
 as will be discussed on pages 10 to 13, it can be used to define the 
 ‘right’ mark for any given script. 

 

▪ As will be shown, an important feature of the statistics of marking is that 
 a script given a specific mark m† by a single examiner can be a member 
 of any one of a number of different generic panel distributions, each 
 with its own median Mp. In practice, this implies that knowledge of 
 an originally-given mark m does not give sufficient information to 
 determine unambiguously the median M† of the specific generic panel 
 distribution of which the mark m is a member. The special re-mark 
 distribution, represented mathematically as Q(p), answers the 
 question “What is the probability that the specific single mark m† is a 
 member of the generic panel distribution of median Mp such that Mp  

 = m† + p?”. The significance of this distribution is that it defines the 
 probability that a mark m† is associated with a particular median Mp. 
 If the median Mp is the ‘right’ mark, this in turn defines the probability 
 that the ‘right’ mark corresponding to an original mark m is                    
 Mp = m† + p. Furthermore, the distribution Q(p) defines the probability 
 that a script, originally given the specific mark m†, would be re-
 marked m* = m† + p  by a senior examiner – hence the description of 
 Q(p) as the special re-mark distribution. 

 

▪ The ordinary re-mark distribution, represented mathematically as r(h), 
 answers the question “If a script originally given the specific mark m†  

 is re-marked m* by any examiner (and so not only by a senior 
 examiner), what is the probability that the re-mark m* will be h marks 
 different from the original mark m, such that m* = m† + h?”. As will be 
 shown, the ordinary re-mark distribution r(h), which is defined by 
 reference to a re-mark m* by any examiner, is (importantly) different 
 from, and broader than, the special re-mark distribution Q(p) 
 resulting from re-marking that same script by a senior examiner. It is 
 the special re-mark distribution Q(p) that explains Ofqual’s research, 
 all of which was based on a comparison to the ‘definitive’ mark given 
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 by a senior examiner; it is the ordinary re-mark distribution r(h), 
 however, that provides a realistic method of measuring grade 
 reliability in practice. 

 
The analysis starts, however, with a statistical discussion of the difficulties 
of determining the ‘right’ mark. 
 

Which mark is ‘right’? 
 
As has been mentioned several times, for all examinations, other than those 
structured as right/wrong multiple-choice questions, it is possible that 
different, equally qualified, examiners might award different marks m to the 
same script. If, for example, 100 examiners each mark the same script once, 
the marks given will form a distribution such as that shown in Figure 4 (which 
is superficially similar in shape to the distribution shown in Figures 1 and 2, 
but is in fact different). 
 
 
Figure 4:  A representative individual panel distribution t(m)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As can be seen, 64 is the most ‘popular’ mark, given by 30 examiners; 9 
examiners give the highest mark, 66; the lowest mark, 60, is given by 3 
examiners. 
 
Figure 4 shows the distribution of marks m given by each of 100 different 
examiners to the same script; strictly speaking, however, Figure 4 does not 
show a probability distribution, for the vertical axis represents the number 
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of examiners who actually gave the script the mark m; furthermore, the sum 
of all the columns is 100, the total number of examiners. By contrast, the 
vertical axis of Figure 2 shows a mathematical probability, and the sum of 
all the columns is 1. Corresponding actual and probability distributions have 
the same shape, and the one may be derived from the other by adjusting the 
vertical axis according to the total population: given the actual distribution, 
the probability distribution is obtained by dividing by the total population; 
given the probability distribution, the actual distribution is obtained by 
multiplying by the total population. 
 
For a specific script, the distribution obtained (whether the distribution of 
actual marks, or the corresponding probability distribution) will be referred 
to as the individual panel distribution t(m) – ‘individual’ because this 
distribution relates to one, specific, individual script; this is in contrast to 
the generic panel distribution, which, as will be seen in the next section, 
relates to any script for the given examination subject.  
 
The individual panel distribution illustrated in Figure 4 happens not to be 
left-right symmetrical, but in practice it often is. Whatever the shape might 
be, as discussed on pages 5 and 6, the distribution is always associated with 
a number of statistical characteristics, for example, for the distribution 
shown in Figure 4: 
 
▪ The mode M, as shown by the peak in the distribution, 64 marks.  
▪ The mean ⟨M⟩, in this case 63.68 marks.  
▪ The median M, which, in this example, is 64, the same as the mode.  
▪ The standard deviation σ, which, for the distribution shown in Figure 4 

 computes as 1.45 marks.  
▪ The end-to-end range N, the range of marks from the lowest mark mmin = 

 60 to the highest mark mmax  = 66, given by the difference mmax – mmin = 
 66 – 60 = 6 marks. 
 

This distribution shown in Figure 4 represents the marks given by 100 
examiners, each marking the same script once. Following the same line of 
reasoning as on page 3, if another examiner were to mark that script, it is 
highly unlikely that the mark will be lower than mmin = 60 or higher than     
mmax  =  66; furthermore, since 30 examiners of the original 100 gave 64 marks, 
there is 30% probability that this additional examiner will also gave 64 marks; 
likewise a 10% chance of 62 marks.  
 
The individual panel distribution t(m) shown in Figure 4 can therefore be used 
to determine the probability that any suitably qualified examiner will give 
the script any particular mark. No mark is favoured, or ‘special’ – it really is 
a lottery as to which mark is actually given, with some marks (such as 64) 
being more likely than others (such as 61). 
 
This range of marks creates a problem if a single mark has to be chosen as a 
measure of the candidate’s assessment, this being the mark that determines 
the grade that appears on the candidate’s certificate and therefore widely 
accepted as the ‘right’ mark by all who might take that grade into 
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consideration when making a decision, such as the offer of an 
apprenticeship, a job or a place at a college or university.  
 
Is the ‘right’ mark the mark that happens to be given by one examiner who, 
by chance, happens to mark the script – which could be any mark from 60 to 
66 – as is the current policy for awarding grades? 
 
Is the ‘right’ mark that given by a ‘special’ examiner, such as a senior 
examiner? If it is, and if the senior examiner’s mark is, say, 61, then an 
inference from Figure 4 is that there is only about a 6% chance that an 
ordinary examiner would give this mark. Perhaps it would be fairer to the 
candidates if marking were done only by senior examiners – but even then 
there must be assurance that all senior examiners always agree, and that the 
distribution of marks is always a ‘spike’ at a single mark, rather than a 
distribution, albeit probably narrower than the distribution shown in Figure 
4. 
 
Or is the ‘right’ mark one of the characteristics of the distribution, such as 
the mode Μ, the mean ⟨M⟩, the median Μ, the highest mark mmax, or the 
lowest mmin? If it is one of these, then it appears that the distribution needs 
to be determined first, but for a public examination, marking every 
individual script in the cohort multiple times is a huge amount of work, and 
so totally impracticable. 
 
Perhaps, though, it might be possible to use statistics to help. Suppose, for 
example, that a script is given a single mark, say, 63. If it were possible to 
estimate that there is, say, about a 20% probability that a mark of 64 is the 
median of the individual panel distribution t(m) of which this mark is a 
member, then that might be quite informative. 
 
Deciding which single mark is ‘right’ is problematic, but supposing for the 
moment that defining a particular single mark as ‘right’ might be useful, 
perhaps it does not matter which single number is chosen from the individual 
panel distribution t(m), provided that three conditions are simultaneously 
fulfilled: 
 
▪ The number chosen must be uniquely representative of the individual 

 panel distribution t(m) with which it is associated. 
▪ That number must be reproducible, in that, for any specific script, the 

 same number must be obtained from all possible individual panel 
 distributions t(m), as generated by using different panels of suitably 
 qualified examiners. 

▪ The principle that defines the chosen number must be used consistently 
 for all candidates. 

 
According to the first of these conditions, the individual panel distribution 
t(m) could, in principle, be represented by, for example, the mean ⟨M⟩, the 
median M, the highest mark mmax, or the lowest mark mmin. The mode M, 
however, must be excluded since, if the distribution is somewhat flat, or if 
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there are two or more equally high ‘humps’, there is more than one mode, 
and so the mode is not uniquely defined as a single mark.  
 
The second condition, reproducibility, is fulfilled by the definition of the 
individual panel distribution t(m) as being a distribution that is independent 
of the examiners. In practice, however, there is the possibility that different 
sets of examiners might result in slightly different distributions, especially 
as regards the low-end and high-end ‘outliers’, so implying that mmax and mmin 
are unsuitable. According to various academic studies, the median is more 
stable with respect to outliers than the mean, and so it is the median M† 
that this paper will use as representative of the corresponding individual 
panel distribution, where the composite symbol M† emphasises that this is 
the specific median of the single individual panel distribution of which the 
given mark m is a member.3 The third condition is then easily fulfilled – if the 
median of the every candidate’s individual panel distribution t(m) is chosen 
as the basis of grading, then all candidates are being treated fairly. 
 
For any script, and the corresponding individual panel distribution t(m), the 
selection of the median M† as the mark that determines the candidate’s 
grade does not imply that the median is the ‘right’ mark. What is, or is not, 
the ‘right’ mark is of no consequence: the important point is that there is a 
mark which acts as a representative of the corresponding individual panel 
distribution t(m), and that this mark is used consistently for all scripts.  
 
A central theme of Ofqual’s November 2016 and November 2018 reports, 
however, is the use of a senior examiner’s mark as a reference point, defining 
the ‘definitive’ mark and the corresponding ‘definitive’ grade – and Figures 
12 and 13 of the November 2016 report even refer to the ‘true grade’. In the 
absence of any other information, this paper will assume that the senior 
examiner’s mark corresponds to the median of the corresponding individual 
panel distribution t(m).  
 

The generic panel distribution T(n) 
 
The individual panel distribution t(m) shown in Figure 4 refers to a single, 
specific, script. Suppose that a second script is randomly chosen, and also 
marked by a panel of 100 examiners, so generating a second, different, 
individual panel distribution t'(m), shown as (b) on the upper right-hand side 
of Figure 5: 
 
 
 
 
 
 
 
 

 
3 RS Pindyck and DL Rubinfeld, Econometric Models and Economic Forecasts (4th edition, 
1998), Irwin/McGraw Hill, p 47. 

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/681625/Marking_consistency_metrics_-_November_2016.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/681625/Marking_consistency_metrics_-_November_2016.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/681625/Marking_consistency_metrics_-_November_2016.pdf
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Figure 5: Aggregating two individual panel distributions t(m) and t'(m)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The individual panel distribution t(m) shown in Figure 5(a) is the same as that 
shown in Figure 4, with a median M† = 64; 5(b) is the individual panel 
distribution t'(m) for a second script, with median M† = 59, and although 
different in detail, the two distributions are quite similar in shape. If these 
two distributions are shifted along the horizontal axis so that they both have 
a median M = 0, the two distributions will overlap, and can be added, 
resulting in the distribution shown in Figure 5(c).  
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In Figure 5(c), the definition of the horizontal axis has changed from ‘Mark 

m, as awarded to a single examiner’ to ‘Number of marks n by which the given 
mark m is greater than the median M† of the particular individual panel 
distribution t(m) or t'(m) of which the mark m is a member, such that                 
m = M† + n’.  This is a consequence of the shift of each individual panel 
distribution to a common median M = 0, and the parameter n defines the 
number of marks by which a mark m is greater than the median M† of the 
particular individual panel distribution of which that specific mark m is a 
member, where n can be positive (implying that the mark m is greater than 
the corresponding median M†), negative (m is less than M†), or zero (m is 
equal to M†). 
 
Suppose that this process is carried out for 10 randomly selected scripts, so 
giving a total of 10 individual panel distributions of the type shown in Figures 
5(a) and 5(b). Each of these 10 distributions has its own median, and its own 
shape, but it is likely that the shapes will be similar. If each of these 10 
distributions is shifted to a common median of 0, they can then be added, 
resulting in an aggregate distribution like that shown in Figure 5(c), but 
representing 10 contributing individual panel distributions, rather than just 
two.  
 
The total number of scripts marked is 1,000, corresponding to 100 examiners 
for each of 10 scripts, and the resulting histogram, the equivalent of Figure 
5(c), would show a number of  columns (say, seven, as in Figure 5), and the 
height of each column would show the numbers of scripts given the median 
mark (corresponding to n = 0); one mark greater than the corresponding 
median (n = 1); one mark lower from the corresponding median (n = – 1); and 
so on for each integral value of n from nmin = = – 4 to nmax = 2, such that the 

total of the heights of all the columns is equal to the total number of scripts 
marked, 1,000.  If the height of each column is divided by 1,000, the total 
of the heights of all the columns is then 1, and each column has a height 
represented by a number less than 1. The overall result is represented as the 
probability distribution shown in Figure 6, with the corresponding numerical 
values in Table 2. 
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Figure 6: The generic panel distribution T(n)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2: Numerical values corresponding to the generic panel distribution 

T(n) shown in Figure 6 
 
 

n 
            Probability T(n)  

Percentage Numeric 

≤ – 5 < 0.1% < 0.001 

– 4 2.0% 0.020 

– 3 4.5% 0.045 

– 2 11.0% 0.110 

– 1 21.0% 0.210 

0 32.0% 0.320 

1 23.5% 0.235 

2 6.0% 0.060 

≥ 3 < 0.1% < 0.001 

Total 100.0% 1.0000 
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As can be seen from the total in Table 2, the summation of all the 
probabilities T(n) is 1.000 = 100%; in real terms, this means that it is virtually 
certain that any mark m will be within – 4 and + 2 marks of the median of 
the generic panel distribution associated with that mark. Mathematically, 
the distribution T(n) is said to be ‘normalised’, as represented as  
 

 
 
where the symbol    means ‘add successive values of T(n) for all values of 

n’.IIn principle, for an examination given standardised marks, n extends 

from – 100 and +100; in practice, the probability T(n) that a script will be 
marked tens of marks away from the associated median is in essence zero, 
and non-zero values will be within a relatively narrow range of values of n 
such as from – 4 to + 2 as in the current example. 
 
In compiling Figure 6, the assumption has been made that each of the 
contributing individual panel distributions are ‘different but similar’ – and, 
in this particular case – each has a total end-to-end range of N = 6 marks, 
extending from nmin = – 4 to nmax = + 2.  
 
This assumption is important, for it implies that the shape defined by Figure 
6: 
 
▪ is sensibly representative of the examination as a whole; 
▪ is independent of the examiners; and  
▪ can be applied to all scripts.  
 
In fact, there are two circumstances in which the first of these conditions 
breaks down: for very low marks, and for very high marks. On a standardised 
mark scale, no script can be given a mark less than zero, and so the individual 
panel distribution for a script given a mark of say, 1, 2 or 3, by any one 
examiner is likely to be truncated on the left. Similarly, no script can be 
given a mark greater than 100, and so the individual panel distribution for a 
script given a mark in the high 90s by any one examiner is likely to be 
truncated on the right. These extreme individual panel distributions are 
therefore likely to be narrower than any others, and more skewed. Very few 
scripts, however, are given such low or high marks, and so, for the purposes 
of this paper, these distributions will be regarded as ‘outliers’, and ignored. 
 
Accordingly, this paper will continue to assume that the three conditions 
mentioned above hold for the vast majority of scripts. It is, however, 
important that this assertion is verified by a detailed statistical analysis; but 
if the three conditions can be accepted as valid, then, as is about to be 
shown, it unlocks the statistics of marking. 
 
The distribution illustrated in Figure 5 will be referred to as the generic 
panel distribution, for it refers to the examination as a whole, so 

 ∑ 
n

T (n)  =  1  

 ∑ 
n
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distinguishing this distribution from any one script’s individual panel 
distribution. Mathematically, this distribution may be represented as a 
function T(n) of the generalised parameter n. As well as having a defined 
shape, an important characteristic of any generic panel distribution is its 
end-to-end range, represented as N marks, such that N = nmax  – nmin, which in 
this example is N = nmax  – nmin  = 2 – (– 4) = 6 marks.  
 
Each subject examination has its own generic panel distribution T(n), 
implying that if, for any particular examination, its shape can be determined 
– for example, by using statistically valid samples – then that same shape can 
be used as a surrogate for the individual panel distribution for any individual 
script given any specific mark. Furthermore, the end-to-end range N of any 
examination’s generic panel distribution T(n) correlates with that 
examination subject’s fuzziness: the value of N for a more fuzzy subject such 
as History will be considerably greater than the value of N for a less fuzzy 
subject such as Chemistry. 
 
As an example of how knowledge of the generic panel distribution for a 
particular examination subject can be used, Figure 6 and Table 2 imply that: 
 
▪ The probability that a mark m  given to any script is the median mark M† 

 is 32%, corresponding to n = 0. 
▪ If the mark m  given to any script is known (say, 54), then there is an 11% 

 probability that this mark is 2 marks lower than the median mark             
 m = M† + n, corresponding to n = – 2, and implying that 54 = M† – 2, 
 from which M† = 56... 

▪ ...and, conversely, if the median mark M† is known (say, 56), then there 
 is an 11% probability that the script will be given a mark m that is 2 
 marks lower: n = – 2 and so m  = M† + n = 56 – 2 = 54.  

 
If the definition of the ‘right’ mark is the median M†, then these inferences 
are important: they state, for this example, that there is a probability of 32% 
(about 1 chance in 3) that any script will be given the ‘right’ mark when 
marked by any examiner, drawn at random from the team of examiners, as 
happens under the grading policy in force at the time of writing. Even more 
important is what this does not say, at least explicitly: if there is about 1 
chance in 3 that a script’s mark is ‘right’, then there are about 2 chances in 
3 that it is wrong. 
 

The special re-mark distribution Q(p) 
 

The medians Mp 

 
In practice, a single script is given a single valid mark m by a single examiner. 
Since, in principle, it is desirable to award the candidate the ‘right’ grade, 
and if it is agreed that the ‘right’ grade corresponds to the median M† of the 
individual panel distribution of which the given mark m is a member, then it 
is clearly useful if that median M† can be determined.  
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One way to determine the median M† is for the script to be marked by a 
panel, and to compile the script’s individual panel distribution – but that is 
expensive and impracticable. So might some statistics help?  
 
At first sight, that appears to be impossible: if only the mark m is known, 
then the median M† might be equal to the given mark m, but it might be 
higher, or it might be lower. It therefore seems that the median M† might 
be any number, and that the problem is insoluble.  But if the generic panel 
distribution T(n) can be estimated by a sampling process (as indeed it can, 
as described on pages 55, 89 and 92 here), and if it is valid to assume that 
the generic panel distribution is a valid surrogate for any specific individual 
panel distribution, then the shape of T(n) can be applied to any script, so 
limiting the possible values of M†, as represented in Figure 7: 
 
 
Figure 7: The uncertainty of the medians Mp for the generic panel 
distributions, of the form shown in Figure 6, associated with the given mark 
m† = 64 
 

 
 
 
Suppose that a script is given a specific mark m† = 64, where the composite 
symbol m† indicates reference to a specific mark given to a specific script by 
a single examiner. Suppose further that the generic panel distribution T(n) 
for the subject examination takes the form shown in Figure 6. Because the 
generic panel distribution T(n) can act as a surrogate for the individual panel 
distribution for this script, then the mark m†  = 64 must be a member of that 
distribution. But since the generic panel distribution T(n) shown in Figure 6 
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has an end-to-end width N of only 6 marks, that constrains the number of 
possible generic panel distributions that: 
 
▪ have a shape defined by T(n); and also 
▪ contain the given mark m† = 64. 
 
This is illustrated in Figure 7, which shows the given mark m† = 64, and also 
(rather vertically compressed) representations of the all the generic panel 
distributions of the shape shown in Figure 6, and with medians M from           
M = 61 to M = 69.   
 
Since the given mark m† = 64 must be a member of its own generic panel 
distribution, it is extremely unlikely that this is the case for any generic panel 
distribution T(n) for which the median M ≤ 61; likewise, for M ≥ 69. It is 
therefore almost certain that the median M† of the specific generic panel 
distribution of which the given mark m† = 64 is a member lies in the range 
62 ≤ M† ≤ 68 This range is 68 – 62 = 6 marks, the same as the end-to-end 
range N of the associated generic panel distribution T(n).  
 
Figure 7 identifies all these possibilities. The distribution T(n) associated with 
the median M = 61, as shown in grey at the bottom, is ruled out, for its end-
to-end range does not include m† = 64; likewise, the distribution T(n) 

associated with the median M = 69, at the top. By contrast, The distribution 
T(n) associated with the median M = 63 does include m† = 64, and so it is 
possible that a script marked m† = 64 might be a member of this distribution, 
in which case the ‘right’ mark for that script is M = 63. As Figure 7 vividly 
shows, however, this is not the only possibility: the distribution T(n) 

associated with the median M = 67 also includes m† = 64, and so the script’s 
‘right’ mark might also be M = 67. As can be seen, a total of 7 = N + 1 
different distributions T(n) include m = 64, and so the ‘right’ mark is 
constrained to one of the seven values from 62 to 68 inclusive.  
 
For a mark m† = 64, as actually given to the script, any of the 7 = N + 1 
allowed values of the median M can be written as Mp, where the parameter 
p is such that Mp  = m† + p. Accordingly, when p = 2, m† + p = 54 + 2 = 56, 
corresponding to M2, as shown in Figure A7. Furthermore, the parameter p 
can take any of N + 1 values, ranging from pmin = – 2 to pmax = 4, including         
p = 0. Reference, to Figure 6, which shows the generic panel distribution T(n) 

on which Figure 4 is based, will show that T(n) also includes a total of N + 1 
marks extending from nmin = – 4 = – pmax to nmax = 2 = – pmin. 
 
These are particular cases of the general principles that: 
 
▪ Any generic panel distribution T(n) extending from nmin to nmax, 

 corresponding to a total end-to-end range N = nmax – nmin marks, and 
 including N + 1 individual marks ... 

▪ ... will be associated with N + 1 values of possible medians Mp ... 
▪ ... corresponding to a range pmin = – nmax  to pmax = – nmin . 
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Figure 7 demonstrates that if an examination subject’s generic panel 
distribution T(n) is known, and has an end-to-end width of N marks from nmin 
to nmax, then the range of possible ‘right’ marks for a script given any mark 
m is limited to N + 1 possibilities Mp, such that Mp = m† + p. 
 
This immediately links to an intuitive understanding of fuzziness and grade 
reliability. A less fuzzy subject, such as Physics, will be associated with a 
more narrow generic panel distribution T(n), and the corresponding value of 
N will be small – perhaps, say, 2 marks. Any Physics script marked m is 
therefore associated with N + 1 = 3 possible values of Mp; by contrast, the 
generic panel distribution T(n) for Religious Studies is likely to be broader – 
say, N = 8 marks – implying that any mark m is associated with N + 1 = 9 
possible values of Mp. If the grade widths are similar for both examination 
subjects, the likelihood that a Religious Studies mark will straddle a grade 
boundary is therefore greater than for a Physics mark; accordingly, the 
grades awarded for Religious Studies are less reliable than those awarded for 
Physics.  
 
For any subject examination, the generic panel distribution T(n) can be 
determined, and this will have an end-to-end range of N marks. Accordingly, 
any script given m† marks can be associated with N + 1 possible values of Mp 

= m† + p, any one of which is that script’s ‘right’ mark. Limiting the range of 
possible ‘right’ marks in this way is helpful, but even better would be to have 
some information as regards their respective probabilities. So, for example, 
taking the case illustrated in Figure 7, for a script marked m† = 64, the ‘right’ 
mark is any one of the seven possible values of Mp from 62 to 68 inclusive. 
Are each of these equally probable, with a 1 in 7 chance (a probability of 
about 0.14, or 14%)? Or are some values of Mp more likely than others? Or, 
more generally, what is the probability distribution of the medians Mp, a 
distribution represented mathematically as Q(p) such that, for any given 
mark m†, the value of Q(p) for any value of p defines the probability that the 
specific mark m† is associated with the median Mp = m† + p? 
 

The distribution Q(p) 
 
To determine Q(p), consider an example of an examination subject for which 
the Figures 6 and 7 apply, and the particular case of a script marked m† = 64 
which is in fact a member of the generic panel distribution for which the 
median M†  =  M2  = 66 = 64 + 2, implying that p = 2. What is the corresponding 
probability Q(2)? 
 
Reference to Figure 7 will verify that, of the seven possible generic panel 
distributions that include the mark m† = 64, the one for which the median is 
66 is that identified as M2. As shown in Figure 6, generic panel distributions 
T(n) are defined in terms of a variable n defined such that a given mark m is 
related to the median M† of its generic panel distribution as m = M† + n. In 
this particular case, m = 64 and M† = 66 implying that n = – 2, as indeed is 
verified by Figure 7 which shows that the mark m = 64 lies two marks to the 
left of the median M2. 
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According to Figure 6, however, the probability that a given mark m is 2 
marks less than the associated median M† is 0.11 = 11%. Conversely, the 
probability that a median M† is 2 marks more than a given mark m is also 
11%. This is the case of interest, and so the probability Q(2) in this particular 
instance is 11%, the value of  T(– 2). 
 
By exactly the same reasoning, comparing Figures 6 and 7, for any value of 
p, the value of Q(p) is given by the corresponding value of T(– p). A depiction 
of the probability distribution Q(p) is shown in Figure 8: 
 
 
Figure 8: The distribution Q(p) of the medians Mp shown in Figure 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
Figure 8 is consistent with Figure 7, with each of the columns in Figure 8 
corresponding to the equivalent median Mp  as shown in blue in Figure 7. 
Figure 8, however, not only identifies the range of possible values of Mp (as 
does Figure 7), but also identifies their probabilities: for a script marked       
m† = 64, the most likely median Mp  with which that mark is associated 
corresponds to p = 0, implying that the probability that M0 = m† + 0 = 64 is 
0.32 = 32%; the probability that M4 = m† + 4 = 68 is 0.02 = 2%. 
 
Furthermore, as can be seen by comparing Figures 8 and 6, the distribution 
Q(p) of the medians Mp = m† + p is the left-right mirror image of the 
corresponding generic panel distribution T(n); this verifies  that, as discussed 
on page 8, if the generic panel distribution is defined mathematically as T(n), 
then the distribution of medians is defined mathematically as  Q(p) = T(– p). 
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Accordingly, the end-to-end range of the distribution Q(p) is the same as the 
end-to-end range of the associated distribution T(n), namely, N marks. 
 

Quantifying grade reliability 
 
In Figure 8, the height of the column for any value of p represents the 
probability that a script, given a single mark m† by a single examiner, is a 
member of the generic panel distribution characterised by the median         
Mp = m† + p. If that median mark Mp has a special significance – for example, 
if it is the conventionally-agreed definition of the ‘right’ mark, or if it 
happens to correspond to the ‘definitive’ mark as given by a senior examiner 
– then it is this median mark Mp that determines the script’s grade. And it is 
the distribution Q(p) that answers the question ‘If a script is a single mark m† 
by a single examiner, what is the probability that the ‘right’ mark for this 
script is Mp = m† + p?’. But not just that. Since a senior examiner, by 
definition, gives the ‘right’ mark, which must be one of the median marks 
Mp, the distribution Q(p) also answers the question ‘If a script is a single mark 
m† by a single examiner and then given a fair re-mark m* by a senior 
examiner, what is the probability that re-mark m* is such that m* = m† + p?’ 
– where the bold symbol m* indicates that the re-mark is done by a senior, 
and not by an ordinary, examiner. 
 
The distribution Q(p) = T(– p), as exemplified by Figure 8, is therefore very 
important as regards quantifying grade reliability. Assuming for the moment 
that the median M† of a specific script’s generic panel distribution T(n), as 
illustrated in Figure 6, has the ‘special’ significance of being the ‘right’ mark, 
then the distribution Q(p) = T(– p) has these characteristics: 
 
▪ The shape – and in particular the end-to-end range N – of Q(p) depends on 

 the examination subject: the fuzzier the subject, the broader the 
 distribution.  

▪ For a script given any mark m, there is only one actual ‘right’ mark, but 
 this mark can be determined only if a panel, or a senior examiner, were 
 to mark that script. If the only information available is the script’s mark 
 m, then the ‘right’ mark can be any mark. But if the generic panel 
 distribution T(n) can be determined for the examination subject (as is 
 quite practicable), then the distribution Q(p) = T(– p) can also be 
 determined. This then limits the possibilities as regards what that 
 script’s ‘right’ mark might be: there is a very high probability that 
 ‘right’ mark is one of the N + 1 marks defined by the distribution Q(p), 
 as exemplified in Figure 8.  

▪ For a script given any mark m†, the probability that the ‘right’ mark is Mp, 
 such that Mp = m† + p, is given by the corresponding value of Q(p), as 
 exemplified by the height of the corresponding column in Figure 8. 

 
This last point unlocks the quantification of grade reliability as measured by 
reference to a ‘special’ mark, such as the the mark given by a senior 
examiner, this being assumed to be the median M of the examination’s 
generic panel distribution T(n). If a script is given a mark m†, say, 64, and if 
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the examination subject’s generic panel distribution T(n) is as illustrated in 
Figure 6, then Table 3 shows the probabilities that the ‘right’ mark is one of 
the seven possibilities from 62 to 68. 
 
 
Table 3: The probability Q(p) that a script originally marked m† = 64 is 
associated with a particular ‘special’ mark = m† + p, these being the medians 
of successive individual panel distributions as illustrated in Figure 7 
 

  
 
Suppose that, for this examination, grade B is defined as all marks from 61 
to 65 inclusive, and grade A marks from 66 to 70 inclusive. A script is marked 
64 is awarded grade B, but according to the data shown in Table 3, there is 
a probability of 21.0% that the corresponding ‘special’ = ‘right’ mark is 65; 
11.0%, 66; 4.5%, 67; and 2.0%, 68. This implies that there is a probability of 
21.0 + 11.0 + 4.5 + 2.0 = 38.5% that the ‘special’ = ‘right’ grade is grade B. 
The reliability of the originally-awarded grade is therefore 61.5%. 
 
The distribution Q(p) = T(– p) therefore defines the probability that a script 
given any original mark m† would be given a different, ‘special’, mark          
m* = m† + p as the result of a fair re-mark. The distribution Q(p) = T(– p) is 
therefore known as the special re-mark distribution, as illustrated in Figure 
A9 – noting that the histogram in Figure A9 is identical to that shown in Figure 
A8, but the caption is different. 
 
 
 
 

‘Special’ mark p 
Probability Q(p) 

Percentage Numeric 

≤ 61 ≤  – 3 < 0.1% < 0.010 

62 – 2 6.0% 0.060 

63 – 1 23.5% 0.235 

m† = 64 0 32.0% 0.320 

65 1 21.0% 0.210 

66 2 11.0% 0.110 

67 3 4.5% 0.045 

68 4 2.0% 0.020 

≥ 69 ≥ 5 < 0.1% < 0.001 

Total  100.0% 1.000 
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Figure 9: The special re-mark distribution, Q(p) defining the probability that 
a script originally marked m† will be re-marked m* = m† + p  by a senior 
examiner 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Q(p) and grade reliability 
 
Suppose that the special re-mark distribution Q(p) as illustrated in Figure 9, 
and the associated data as shown in Table 3, are known, and valid for a 
particular examination subject. Suppose further that 1,000 candidates are 
marked m† = 64 marks. There is therefore a probability of 0.32 = 32% that a 
senior examiner would re-mark any of those 1,000 scripts m* = 64, 
corresponding to p = 0. The number of candidates re-marked m* = 64 by a 
senior examiner may therefore be estimated as 0.32 x 1,000 = 320 
candidates. Similarly, the number of candidates re-marked m* = 63 by a 
senior examiner, corresponding to p = – 1, is 0.235 x 1,000 = 235, and likewise 
for all re-marks from m* = 62 (p = – 2) to m* = 68 (p = 4), with the number 
of candidates being re-marked m* = 61 or lower, or m* = 69 or higher, 
estimated as zero. These inferences can be represented as shown in Figure 
10: 
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Figure 10: Re-marks m* by a senior examiner for a cohort of 1,000 
candidates, all given an original mark m† = 64, for an examination for which 
the special re-mark distribution Q(p) as shown in Figure 9 is valid 
 
 

 
 

 
In Figure 10, there are a total of N + 1 = 7 ‘layers’, corresponding to each of 
the allowed values of p from pmin = – 2 to pmax = 4, as shown in Figure 7; 
furthermore, the ‘thickness’ of each layer is proportional to the 
corresponding value of the special re-mark distribution Q(p). In essence, the 
distribution Q(p) is being displayed vertically, from pmin at the bottom to pmax 
at the top. 
 
Figure 11 brings together a series of representations of the type illustrated 
in Figure 10 for a sequence of marks from 53 to 66, for an examination with 
the grade boundaries as shown. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1,000

candidates m*0 = m† + 0 = 64:  320 candidates

m*2 = m† + 2 = 66:  110 candidates

m*1 = m† + 1 = 65:  210 candidates

m*-1 = m† – 1 = 63:  235 candidates

m*3 = m† + 3 = 67:   45 candidates

m*-2 = m† – 2 = 62:   60 candidates

m*4 = m† + 4 = 68:   20 candidates

Original mark m† = 64
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Figure 11: A visualisation of grade reliability 
 
 

 
 
 
For clarity, the figure is based on the (unrealistic) assumption that the same 
numbers of candidates are given each of the original marks m†, as shown by 
the equal heights of all the columns. As a consequence, the (much more 
valid) assumption that the same special re-mark distribution Q(p) applies to 
all original marks m† implies that any given layer has the same thickness 
across the diagram. 
 
Taking as an example those candidates all originally given m† = 64, and all 
awarded grade B, the bottom three layers represent the numbers of 
candidates whose scripts, if re-marked by a senior examiner, would be given 
62 (60 candidates), 63 (235 candidates) or 64 (320 candidates), all of whom 
have their original grades confirmed. The top four layers represent the 
numbers of candidates whose scripts would be re-marked 65 (210 
candidates), 66 (110 candidates), 67 (45 candidates) or 68 (20 candidates), 
all of whom would be up-graded to grade A; these 385 candidates may 
therefore all be regarded as ‘disadvantaged’ (see pages 60 and 61 here). Of 
the 1,000 candidates originally marked m† = 64, a total of 615 would have 
their grades confirmed by a re-mark by a senior examiner, and 385 would 
have their grades changed; the reliability of the 1,000 grades originally 
marked m† = 64 is therefore 61.5%. 
 
For the 1,000 candidates originally given m† = 60, the bottom two layers 
represent candidates whose scripts would be re-marked 58 (60 candidates) 
or 59 (235 candidates), resulting in a down-grade to grade C; these 295 
candidates are therefore ‘lucky’. The remaining 705 candidates would be re-
marked 60 (320 candidates), 61 (210), 62 (110), 63 (45), or 64 (20), all of 
which are confirmed as the original grade C. The reliability of the 1,000 
grades originally marked m† = 60 is therefore 70.5%. 

Grade AGrade D Grade BGrade C

60 61 64595655 636257 58 65 6653 54

‘Lucky’

candidates

‘Disadvantaged’

candidates

‘Confirmed’

candidates

m*0 = m† + 0

m*–1 = m† – 1

m*–2 = m† – 2

m*1 = m† + 1

m*2 = m† + 2

m*3 = m† + 3

m*4 = m† + 4

Original mark m†

https://7c54916d-a88a-4136-a2a0-68566fc5ecc6.usrfiles.com/ugd/7c5491_df145e5110c94335a3cf4622c60ba0a5.pdf
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For the 5,000 candidates originally awarded grade B, Figure 11 indicates that 
645 candidates are disadvantaged, and 345 lucky; 4,010 candidates would 
have their grade confirmed. The average reliability of grade B is therefore 
4,010/5000 x 100 = 80.2%. 
 
Figure 12 shows exactly the same data as that shown in Figure 11, but with 
grade B now being wider, encompassing all original marks m† from 55 to 64 
inclusive, corresponding to a total of 10,000 candidates. 
 
 
Figure 12: The effect on grade reliability of grade width 
 
 

 
 
 
It is immediately evident visually that, compared to Figure 11, the green 
area associated with the wider grade B is now much larger, both in absolute 
terms and also in relation to the associated pale blue and yellow areas, 
suggesting that the reliability of grade B has increased. This can be verified 
numerically: in Figure 12, of the 10,000 candidates originally awarded grade 
B, the number of candidates whose grades are changed as the result of a re-
mark by a senior examiner is the same in both figures at 990, but the number 
of candidates whose grades are confirmed is now 9,010. The average 
reliability for the wider grade B shown in Figure 12 is therefore 90.1%, 
compared to an average reliability of 80.2% for the narrower grade B shown 
in Figure 11. 
 
 
 
 
 
 
 

Grade AGrade C Grade B

Original mark m†

‘Lucky’

candidates

‘Disadvantaged’

candidates

‘Confirmed’

candidates

m*0 = m† + 0

m*–1 = m† – 1

m*–2 = m† – 2

m*1 = m† + 1

m*2 = m† + 2

m*3 = m† + 3

m*4 = m† + 4

60 61 64595655 636257 58 65 6653 54
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The ordinary re-mark distribution r(h) 
 

The distribution r(h) 
 
The special re-mark distribution Q(p), as exemplified by Figure 9, is exactly 
that – ‘special’ – for it defines the probability that, on being fairly re-marked, 
a script originally mark m  will be given a ‘special’ mark, such as the mark 
corresponding to the median Mp of an overlapping generic panel distribution, 
or the re-mark m* = m† + p given by a senior examiner.  
 
Suppose, however, that a script originally marked m† = 64 is re-marked m* 
by an ordinary examiner, drawn at random from the entire team of examiners 
(where a re-mark by an ordinary examiner is symbolised by m*, in contrast 
to the bold symbol m* for a re-mark by a senior examiner). Both the original 
mark m† and the re-mark m* must be members of the same generic panel 
distribution, but if only the original mark m†  is known at the outset, there is 
no knowledge as to which particular generic panel distribution this might be, 
as exemplified in Figure 13. 
 
 
Figure 13: Re-marking by an ordinary examiner  
 
 

 
 

64 65 68 6963605958 7067666261 7157

Range of possible re-marks m* = 12 = 2N

Original mark m† = 64

Re-mark m*
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For an examination for which T(n) is as shown in Figure 6, a script originally 
marked m† = 64 can be a member of any of the seven distributions 
represented by the ‘vertically squashed’ representations of the distribution, 
as shown in Figure 13. If this script is fairly re-marked by an ordinary 
examiner, the re-mark m* can be any mark from 58 to 70, 6 marks either 
side of the original mark 64 and spanning a total range of 70 – 58 = 12 marks 
– twice the range of the distributions of medians Mp shown in Figure 7. 
 
As shown in Figure 13, for an examination characterised by the generic panel 
distribution T(n) as illustrated in Figure 6, a script originally marked m† = 64 
by a first ordinary examiner might be given a re-mark m* by another ordinary 
examiner such that m* can be any number between 58 and 70, but these are 
not equally probable. 
 
Accordingly, we may define a distribution r(h) specifying the probability that 
a script originally marked m† is re-marked m* = m† + h by an ordinary 
examiner. The distribution r(h), known as the ordinary re-mark distribution, 
can be obtained by weighting all possible distributions T(n) by the probability 
of their occurrence as defined by Q(p), implying (as will be proven on pages 
37 to 39) that r(h) is known mathematically as the ‘convolution’ of Q(p) and 
T(p), represented by the symbol ✻ as 
 

r(h) = Q(p) ✻ T(p) 
 
Also, as discussed on pages 22 to 24, Q(p) = T(– p), and so  
 

r(h) = T(– p) ✻ T(p) 
 
this being known mathematically as the ‘auto-correlation’ of the underlying 
distribution T(n), as shown in Figure 14, with the corresponding numerical 
values in Table 3. 
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End-to-end range of possible re-marks = 12 marks = 2N

Figure 14: The ordinary re-mark distribution r(h)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 4: The probability that a script originally marked m† = 64 will be re-
marked m* = m† + h, as shown in Figure 14. 
 

Re-mark 

m* 
h 

Probability r(h) 

% Numeric 

≤ 57 ≤ – 7 < 0.01% < 0.0001 

58 – 6 0.1% 0.001 

59 – 5 0.7% 0.007 

60 – 4 2.4% 0.024 

61 – 3  5.7% 0.057 

62 – 2 11.5% 0.115 

63 – 1 18.6% 0.186 

m† = 64 0 22.0% 0.220 

65 1 18.6% 0.186 

66 2 11.5% 0.115 

67 3 5.7% 0.057 

68 4 2.4% 0.024 

69 5 0.7% 0.007 

0.00

0.05

0.10

0.15

0.20

0.25

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

Probability

r(h)

hmax = 6 markshmin = –6 marks

Number of marks h by which a re-mark m* by an ordinary examiner

is greater than the original mark m†, such that m* = m† + h. 
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For an examination characterised by a generic panel distribution T(n), as 
illustrated in Figure 6, the distribution r(h) shown in Figure 14, and the 
corresponding values in Table 4, define the probability that a script originally 
marked m† will be re-marked m* = m†  + h by a second, ordinary examiner, 
drawn at random from the team of examiners. Figure 14 is a more 
informative representation of the same data as shown in Figure 13: Figure 13 
shows separately the seven different individual panel distributions of which 
the original mark m† = 64 is a member; in Figure 14, these seven individual 
distributions have each been weighted according to the appropriate 
probability of occurrence, and then aggregated.  
 

Why the distribution r(h) is important 
 
The significance of the distribution shown in Figure 14 is that it defines the 
probability that a script given a mark m† by any one ordinary examiner will 
be given a mark m*   = m† + h by another examiner – regardless of the order 
in which those marks are given. This distribution therefore quantifies the 
‘lottery-of-the-first-mark’ – the fact that a candidate’s grade is determined 
by the mark given by the examiner who happens to mark the script first. 
 
The fundamental measurement defined by this distribution is a comparison 
between two marks, m†  and m*, each given by ordinary examiners. There is 
no assumption as to whether any one mark is ‘right’, or ‘special’; what is 
important is that the two marks m† and m*  are different, and should they lie 
on different sides of a grade boundary, the corresponding grades will be 
different. Since the ordinary re-mark distribution r(h) describes the statistics 
of ordinary marking, it is more realistic and practical than the special re-
mark distribution Q(p), as exemplified by Figure 9. 
 
As already noted, however, any examination subject has a characteristic 
generic panel distribution T(n). Furthermore, as discussed on pages 22 to 24, 
the distribution T(n) can be used to determine the special re-mark 
distribution Q(p) as 
 

Q(p) = T(– p) 
 
Also, as already noted and as will be proven on pages 37 to 39, the ordinary 
re-mark distribution r(h) is related to the two distributions T(p) and Q(p) by 
the mathematical process known as convolution as 
 

r(h) = Q(p) ✻ T(p) = T(– p) ✻ T(p) 
 

70 6 0.1% 0.001 

≥ 71 ≥ 7 < 0.01%         < 0.0001 

Total  100.0%    1.000 



                          33 

Accordingly, if (as is indeed the case) the distribution r(h) can be determined 
by statistical sampling, then the mathematical process known as 
‘deconvolution’ can be used to derive T(p) and hence Q(p) = T(– p). 
 
The special re-mark distribution Q(p) = T(– p) and the ordinary re-mark 
distribution r(h) = Q(p) ✻ T(p) = T(– p) ✻ T(p) are therefore not independent: 
knowledge of the one implies knowledge of the other. The ordinary re-mark 
distribution r(h), however, is the more pragmatic. Since it is based on the 
marks given by ordinary examiners, it can be measured by statistical 
sampling across the whole examiner community; furthermore, unlike the 
special re-mark distribution Q(p), the ordinary re-mark distribution r(h), does 
not require, or rely on, a (conceptually problematic) definition of ‘right’ or 
‘definitive’. 
 
Comparison of Figure 9, which shows a representative special re-mark 
distribution Q(p), and Figure 14, which shows the corresponding ordinary re-
mark distribution r(h), highlights three differences between these two 
distributions: 
 

▪ The ordinary re-mark distribution r(h) is necessarily, and therefore always 
 symmetrical, about the mid-point. The special re-mark distribution 
 Q(p) will be symmetrical if the underlying generic panel 
 distribution T(n) is itself symmetrical, as it often is, but not always (as, 
 for example, illustrated in Figures 6 and 9). The total end-to-end 
 range of r(h) can therefore be expressed as 2f marks, such that r(h) 

 extends from hmin = m† – f to hmax = m† + f. It is this parameter f  that 
 features in the various solutions to the grade reliability problem, as 
 discussed, for example, here. 

▪ The ordinary re-mark distribution r(h) is always both flatter ... 
▪ ... and broader than the corresponding special re-mark distribution Q(p). 
 
This third point is especially important as regards measures of grade 
reliability. As has been mentioned many times, the fuzzier the subject, the 
more unreliable the corresponding grades. ‘Fuzziness’ is a vague, if 
descriptive, term; fuzziness, however, can be quantified in terms of 
measurements of the width of either the special re-mark distribution Q(p) (if 
the re-mark is a ‘special’ mark, such as the ‘definitive’ mark given by a senior 
examiner) or the ordinary re-mark distribution r(h) (if the re-mark is a mark 
given by a second ordinary examiner). There are a number of different 
possible measures of the widths of these distributions, the first being the 
standard deviation (which can be computed, but is not immediately obvious 
from depictions such as those in Figures 9 and 14), and the second the end-
to-end range (which is statistically less rigorous, but easier to measure). But 
whichever measure is chosen, and ensuring that the same measure is used 
for corresponding special and ordinary re-mark distributions, there is a 
fundamental truth: the measure of grade reliability derived from the 
narrower special re-mark distribution will always be a larger number than 
the measure derived from the broader ordinary re-mark distribution. If the 
measure is the end-to-end range, then the width of the  corresponding 
ordinary distribution – 12 marks for the example shown in Figure 13 – is 

https://www.hepi.ac.uk/2019/03/04/yes-the-grade-reliability-problem-can-be-solved/
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double that of the width of the corresponding special distribution (6 marks 
in the example shown in Figure 8); if the measure is the standard deviation, 
and if the underlying generic distribution T(n) is a Gaussian distribution of 
standard deviation σ, then the standard deviation of the special re-mark 
distribution Q(p) is also σ, and that of the ordinary re-mark distribution r(h), 
σ √2 (see page 5 here). 
 
Accordingly, if measures of grade reliability are made using the special re-
mark distribution by reference to a senior examiner, then grades will appear 
to be more reliable than as measured relative to another ordinary examiner.  
 

The double marking fallacy 
 
A further feature of the ordinary re-mark distribution, as exemplified by 
Figure 14, concerns the widely-held belief that marking a script twice – 
‘double marking’ – yields a more reliable mark. So, for example, if the 
original mark is m†, and the re-mark m*, then perhaps m*  is the ‘right’ mark 
- as it will be if the second examiner is a senior examiner whose mark is by 
definition ‘definitive’. If, however, the second examiner is an ordinary 
examiner, then the re-mark m* will be ‘definitive’ only if that ordinary 
examiner happens to give the same mark as that given by a senior examiner, 
which would be a statistical accident; but surely it is ‘common sense’ that, 
under all circumstances, the average (m†  + m*)/2 is a ‘better’ mark than 
either m† or m*. Is this true? 
 
To explore this question, suppose that the generic panel distribution of the 
subject examination is as shown in Figure 6, implying that all the subsequent 
figures are valid.  Suppose further that a ‘secret study’ has determined that 
a particular script is known to be a member of the individual panel 
distribution associated with a median M† = 66, and that this median is the 
‘definitive’ mark given by a senior examiner. 
 
None of this is known to the ordinary examiners, one of whom marks the 
script m†  = 64. The script is then fairly re-marked m* = 62 by a second 
ordinary examiner, so identifying the two-heads-are-better-than-one 
average mark (m†  + m*)/2 = 63. Which of the three marks 64 (the original), 
62 (the re-mark) and 63 (the average) is right? 
 
 
 
 
 
 
 
 
 
 
 
 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.583.3007&rep=rep1&type=pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/397386/2014-02-14-review-of-double-marking-research.pdf
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Figure 15: Double marking. A script is given an original mark m† = 64. The 
‘definitive’ mark for that script is M† = 66. How useful is a re-mark m* = 62? 
 
 

 
 
Figure 15, which contains much more information than is available to either 
of the two ordinary examiners, provides the context in which this example 
of double-marking is taking place. The original mark m† = 64 is a member of 
any one of seven possible generic panel distributions, each with its own 
‘definitive’ mark, the median Mp; in fact, the ‘secret knowledge’ is that the 
actual generic panel distribution for this particular script is that associated 
with the median M2 = 66 = M†. 
 
The second ordinary examiner gives the script a re-mark m* = 62; as can be 
seen, this mark is also a member of the panel distribution associated with 
the median M2 = 66, and so is a valid re-mark. According to the ‘secret 
knowledge’, however, the ‘definitive’ mark for this script is M2 = 66, 
implying that both the re-mark m* = 62 and the average mark (m†  + m*)/2 
= 63 are even further from the ‘definitive’ mark than the original mark m†  = 
64. In this instance, double-marking has made matters worse, not better. 
 
Reference to Figure 14, and the data in Table 4, shows that there is a 
probability of about 12% that a script originally marked m†  = 64 will be re-
marked two marks lower, m* = 62, for which the parameter h = – 2. Figure 
14 also shows that the most likely re-mark, with a probability of about 22%, 
corresponds to a value of h = 0, implying that the re-mark m* is equal to the 

64 65 68 6963605958 7067666261 7157

Original mark
m† = 64

Actual re-mark
m* † = 62

Re-mark m*
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original mark m† = 64. A re-mark m* = 64 might be interpreted as 
confirmation that 64 is indeed the ‘right’ mark – but reference to Figure 15 
shows that the re-mark has in fact added no further useful information: the 
mark, and the re-mark, are both members of all of the original seven possible 
panel distributions.  
 
If, however, the re-mark is m* = 68, corresponding to a value of h = 4, then 
the average mark (m†  + m*)/2 = 66, which is equal to the ‘definitive' mark 
M† = 66. The probability that this will happen, according to Figure 14, is 
about 2% (compared to probabilities of about 22% for a re-mark m* = 64, and 
about 12% that m* = 62), and a re-mark m* = 68 is the only value for which 
the average is ‘right’. Furthermore, since both the original mark m† = 64 and 
the re-mark m* = 68 must both be members of the same generic panel 
distribution, a re-mark m* = 68 eliminates the possibility that this panel 
distribution is associated with a median of 62, 63, 64 or 65, but still leaves 
open the possibilities of medians 66, 67 or 68. 
 
As noted earlier, reference to Figure 14 shows that the probability that a 
script originally marked m† = 64 and then fairly re-marked m* = 62, for which 
the parameter h = – 2, is about 12%. It might be argued, however, that to 
use Figure 14 to determine this probability is wrong. Since it is known that 
both the original mark m† = 64 and the re-mark m* = 62 must be members of 
the same generic panel distribution, the correct distribution to use is that 
representing the generic panel distribution as shown in Figure 6 and Table 2: 
if a re-mark m* is 2 marks lower than the original mark m†, the probability 
is therefore about 11%. This number happens to be rather close to the 
probability of 12% as inferred from Figure 14, but this is a numerical co-
incidence rather than an indication of a deeper truth; the fundamental 
question remains – which of Figures 6 and 14 is the correct one to use? 
 
The argument in favour of using Figure 6, the generic panel distribution, is 
apparently compelling, for it as indeed true that both the original mark m†  

= 64 and the re-mark m*  = 62 must indeed be members of the same generic 
panel distribution – and it is Figure 6, not Figure 14, that shows the 
probabilities that the same script is given different marks. 
 
However compelling, this argument is false. It is, however, true that both 
the original mark m†  and the re-mark m*   must be members of the same 
generic panel distribution. But when the only information available is the 
original mark m†, there is no knowledge as to which specific distribution this 
is; furthermore, the additional information provided by the re-mark m* 
reduces this uncertainty to only a limited extent, if at all (for example, when 
m† = m* = 64, and the full uncertainty remains), and the fuzzier the 
examination subject, the less helpful the second mark. Certainly, if the 
script is re-marked not just once, but progressively, then each successive re-
mark provides further information: ultimately, 100 re-marks will reproduce 
the ‘correct’ individual panel distribution, the median of which is indeed the 
‘definitive’ mark.  
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Overall, for any original mark m†, any single re-mark m* is as likely to be 
higher than the original mark m† as it is to be lower, and the resulting 
average (m†  + m*)/2 will also be lower or higher accordingly. Both marks m† 

and m* are just random samples from the range ultimately determined by 
the examination subject’s fuzziness;  none of the marks m†, m*  and             
(m† + m*)/2 have any particular significance. Double marking adds little 
useful information, and, as discussed on pages 10 to 13, the search for the 
‘right’ mark is illusory (see also pages 81, 114 and 186 here). 
 

The mathematics of Q(p) and r(h) 
 
This section explores the mathematics of the special re-mark distribution 
Q(p), as illustrated in Figure 8, and the ordinary re-mark distribution r(h), as 
illustrated in Figure 11.  
 
A script is given a single valid original mark m† by a single examiner, and a 
single valid re-mark m* by another examiner. Both m† and m* must be 
members of the same individual panel distribution. Operationally, however, 
there is no knowledge as to which particular individual panel distribution this 
is, and so its shape is approximated as that of the generic panel distribution 
T(n). If the total end-to-end range of the distribution is N marks, then, as 
shown in Figure 7, the median can take any one of N  + 1 values                         
Mp = m† + p. 
 
For any original mark m†, the distribution Q(p) defines the probability that 
the median Mp = m† + p is the median of the actual generic panel distribution 
of which the original mark m† is a member. If it is this median mark that 
would be given if the script were fairly re-marked by a senior examiner, then 
the distribution Q(p) is, as has been discussed, known as the special re-mark 
distribution. The distribution Q(p) corresponding to the generic panel 
distribution T(n) shown in Figure 6 is illustrated in Figure 8. As can be seen, 
the total end-to-end width of each of these distributions is the same, N 
marks, and mathematically Q(p) is, as discussed on pages 22 to 24, the left-
right mirror image of T(n) such that 
 

Q(p) = T(– p) 
 
As was shown by the comparison between Figures 7 and 13, if a script 
originally marked m† is fairly re-marked m* by a second ordinary examiner, 
the end-to-end range of possible re-marks is 2N marks from a lowest possible 
mark m*min  to a highest possible mark m*max. In general, m*  = m† + h, where 
the parameter h can take any one of 2N + 1 values, including zero. For any 
original mark m†, the probability that the re-mark m*  = m† + h is given by 
the value of the ordinary re-mark distribution r(h) for the corresponding value 
of h. 
 
 
 
 

https://7c54916d-a88a-4136-a2a0-68566fc5ecc6.usrfiles.com/ugd/7c5491_df145e5110c94335a3cf4622c60ba0a5.pdf
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Figure 16: The variables p, n and h, showing that h = p + n 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16 shows an example of a script originally marked m† = 64, and 
subsequently re-marked m* = 67. Since the parameter h is defined such that 
m* = m† + h, then h = m* – m†, which in this case implies that h = m* – m† = 
67 – 64 = 3. 
 
As illustrated in Figure 16, an original mark m† = 64 and a re-mark m* = 67 
imply that the original mark m† = 64 can be a member of the four generic 
panel distributions corresponding to values of p = 1, 2, 3 or 4, with medians 
M1, M2, M3 or M4; suppose for the moment that the actual generic panel 
distribution is that for p = 2, with median M2 as shown in blue. Within this 
particular generic panel distribution, the re-mark m* = 67 corresponds to a 
value of n = 1, from which it is evident that  
 

h = p + n 
 
and therefore that 
 

n = h – p 
 
Although these relationships between the variables n, p and h have been 
demonstrated for a particular case, they are general.  
 

Original mark m† = 64 p = 2

64 65 68 6963605958 7067666261 7157

Re-mark m* = 67

h = 3

n = 1

Range of possible
medians Mp

0 1 4 5–1–4–5–6 632–2–3 7–7
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M+2

M+1

M 0

M–1
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p such that 
Mp = m† + p
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Within any particular generic panel distribution, the probability that a script 
is given a mark m = M† + n, n marks greater than that distribution’s median 
M†, is given by the corresponding value of T(n). But since n = h – p, this 
probability may be written as T(h – p), representing the probability that a 
script originally marked m is re-marked m* such that m* = m† + h, under the 
assumption that both the original mark m† and the re-mark m* are members 
of the specific generic panel distribution of median Mp = m† + p. 
 
The specific value of p, however, is unknown, but the probability of any of 
the N + 1 allowed values of p is defined by the distribution Q(p), which is 
known once the underlying generic panel distribution T(n) has been 
determined. 
 
The probability r(h) that a script given an original mark m will be given a re-
mark m* = m† + h is therefore determined by weighting any particular          
T(h – p) by the probability that the script is indeed a member of that specific 
distribution of median Mp = m† + p, this being the distribution Q(p), and then 
summing over all allowed values of p: 
 

 
 
This summation is the mathematical definition of the convolution Q(p) ✻ T(p).  
 
Since, as we saw on page 22,  
 

Q(p) = T(– p) 
 

then 
 

 
 
 
This expression is known as the ‘auto-correlation’ of T(p). Furthermore, if, 
as is often the case, T(p) is left-right symmetrical, T(p) = T(– p) and so 
 

 
 
this expression being known as the ‘self-convolution’ of T(p). 
 
A mathematical expression such as  
 

 

r(h)  =  ∑ 
p

Q  ( p) T  (h – p)

r(h)  =  ∑ 
p

T  (– p) T  (h – p)  =   ∑ 
p

T  ( p) T  (h + p)

r(h)  =  ∑ 
p

T  ( p) T  (h – p)

r(h)  =  ∑ 
p

Q  ( p) T  (h – p)  =  ∑ 
p

T  (– p) T  (h – p) 

https://graphics.stanford.edu/courses/cs178/applets/convolution.html
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can be intimidating, as can technical terms such as ‘convolution’ and ‘auto-
correlation’. To interpret the expression, notice firstly that the symbol Σ 
indicates a summation, and the subscript p  that this summation is over all 
allowed values of the parameter p. This parameter was introduced in Figure 
7, and represents the number of generic panel distributions that include the 
original mark m†, and can take N + 1 values, where N is the end-to-end range 
of the examination subject’s generic panel distribution T(n), the 
fundamental statistical description of that examination subject’s fuzziness. 
For the example used in this paper, the generic panel distribution is shown 
in Figure 6, and has an end-to-end range of N = 6 marks, implying that               
N + 1 = 7. There are therefore 7 terms in the summation. 
 
Each of these terms is a distribution represented as T(h – p). The distribution 
T(n), the generic panel distribution, is illustrated in Figure 6 in terms of a 
variable n, but the shape is exactly the same if the variable used is h, such 
that the distribution is written as T(h). 
 
For any value of p, the distribution T(h – p) has the same shape as T(h) (and 
hence T(n)) but is shifted by p marks to the right (if p is positive), or to the 
left (if p is negative). Since, in this example, the variable p can take N + 1 = 
7 values from pmin = – 2 to pmax = + 4, including p = 0, the summation  
 

 
 
therefore represents the summation of seven distributions, each of the same 
shape (as shown in Figure 6), but ‘spread’ from left to right, as illustrated in 
Figure 17 (in which, for clarity, each individual distribution is shown by a 
continuous line rather than a sequence of columns). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 ∑ 
p

T  (h – p) 
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Figure 17: The summation                 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 17 shows N + 1 = 7 generic panel distributions T(h – p) of the general 
shape of T(n) as shown in Figure 6, corresponding to each of the seven 
distributions shown in Figure 7, and then aggregated. When the values of 
each of these for any value of h are added, the result is as depicted by the 
histogram; the corresponding numeric values are shown an Table 5. 
 
Table 5: Values of T(h – p) – the data corresponding to Figure 17, with blank 
cells = 0 
 

 

h
Row 

total–7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7

T(h) 0.020 0.045 0.110 0.210 0.320 0.235 0.060

p

5 0.000

4 0.020 0.045 0.110 0.210 0.320 0.235 0.060 1.000

3 0.020 0.045 0.110 0.210 0.320 0.235 0.060 1.000

2 0.020 0.045 0.110 0.210 0.320 0.235 0.060 1.000

1 0.020 0.045 0.110 0.210 0.320 0.235 0.060 1.000

0 0.020 0.045 0.110 0.210 0.320 0.235 0.060 1.000

–1 0.020 0.045 0.110 0.210 0.320 0.235 0.060 1.000

–2 0.020 0.045 0.110 0.210 0.320 0.235 0.060 1.000

–3 1.000

Column 
total

0.000 0.020 0.065 0.175 0.385 0.705 0.940 1.000 0.980 0.935 0.825 0.615 0.295 0.060 0.000 7.000

 ∑ 
p

T  (h – p) 
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T(h – p)

for p = 4

T(h – p)

for p = –2

 ∑ 
p

T  (h – p) 

 ∑ 
p

T  (h – p) 

Number of marks h by which a re-mark m* is greater

than the original mark m†, such that m* = m† + h. 

or T(h – p) 
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In Table 5, the row identified as T(h) shows values of T(h), which are identical 
to those of T(n) as given in Table 2, but expressed in terms of the variable h 
rather than n. In particular, the median of T(h) corresponds to the median 
value 0.320 for h = 0. Subsequent rows show the values of T(h – p) for the 
various values of p defined by Figure 7, and also shown in Figures 13, 15 and 
16. Across each row, the variable p is held constant, and the variable h takes 
successive values in principle from – 100 to + 100, but in practice only from 
hmin = – 6 to hmax = + 6, for it is only within this range that T(h – p) has a non-
zero value.  
 
For values of p greater than pmax = + 4 or less than pmin = – 2, T(h – p) = 0 for 
all values of h; for values of p between pmax = + 4 and pmin = – 2 inclusive, 
values of T(h – p) are shifted p marks to the right relative to T(h) if p is 
positive, or p marks to the left if p is negative, with the median Mp of             
T(h – p) corresponding to h = p. 
 
The row totals                  are all 1.000; the column totals define the value 

of             I for each value of h as shown by the histogram in Figure 17; and  

 
the grand total in the bottom right-hand corner is 7.000. 
 
In Figure 17, each of the distributions T(h – p) has the same weight, implying 
that each distribution, and each corresponding median Mp, are equally 
probable. In fact, this is not the case: the probability of any median Mp is 
determined by the corresponding value of Q(p). Accordingly, when each of 
the N + 1 = 7 generic panel distributions T(h – p) is weighted by the 
corresponding value of Q(p), the result, mathematically is the ordinary re-
mark distribution r(h) 
 

 
 
If Q(p) = T(– p), this becomes 

 

 
 
which may be represented graphically as shown in Figure 18: 
 
 
 
 
 
 
 
 

r(h)  =  ∑ 
p

Q  ( p) T  (h – p)   =  Q  ( p)  *  T  ( p)

r(h)  =  ∑ 
p

T  (– p) T  (h – p)   =  T  (– p)  *  T  ( p)

 ∑ 
p

T  (h – p) 

 ∑ 
p

T  (h – p) 



                          43 

Figure 18: The ordinary re-mark distribution r(h) = Q(p) ✻ T(p) = T(– p) ✻ T(p)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In Figure 18, the different sizes of the N + 1 = 7 generic panel distributions 
T(h – p) of the general shape of T(n) (compare Figure A14) are determined by 
weighting each T(h – p) by the probability Q(p) of its occurrence, with the 
distribution corresponding to the given mark m†  (for which p = 0) having the 
the heaviest weighting, and the remotest distributions (p = 3 and 4) the 
lightest. The summation, which represents the values of the ordinary re-mark 
distribution r(h), is shown by the columns, and has the distinctive feature of 
being left-right symmetrical about h = 0, even though the underlying generic 
panel distribution T(n), as shown in Figure 6, is asymmetrical.  
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r(h)  =  ∑ 
p

Q  ( p) T  (h – p) 

Number of marks h by which a re-mark m* is greater

than the original mark m†, such that m* = m† + h. 

r(h)
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Table 6: Values of Q(p) T(h – p) = T(– p) T(h – p) – the data corresponding to 
Figure 18, with blank cells = 0 
 
 

 
 

 
Table 6 shows the data corresponding to Figure 18. Each row represents a 
value for the parameter p from pmin = – 2 to pmax = + 4, and each column a 
value for the parameter h from hmin = – 6 to hmax = + 6. Across any row, for a 
given value of the parameter p, the numbers represent, for each value of the 
parameter h, the value of the product Q(p) T(h – p) = T(– p) T(h – p). Since in 
any row the value of the parameter p is a constant, the value of                    
Q(p) = T(– p) is also a constant, corresponding to the probability that the 
original mark m† and the re-mark m* are both members of the generic panel 
distribution of median Mp. This value therefore acts as a (constant) weighting 
factor for each of the values of T(h – p), this being a distribution of the shape 
of the generic panel distribution T(n), but with the median Mp shifted to         
h = p, as shown in Table 5. Since, for all values of p, Q(p) = T(– p) < 1, the 
product Q(p) T(h – p) = T(– p) T(h – p) will always be less than the corresponding 
value of T(h – p), and will vary according to the value of p. 
 
Each of the rows in Table 6 corresponds to the ‘row’ in Figures 7, 13, 15 and 
16 for the same value of p, and the row totals in Table 6 each correspond to 
the summation                        . Since, across any row, the value of Q(p) is a 

constant for all values of T(h – p), thenI 

 

 
 
As noted on page 17, the distribution T(n) normalised, and so the distribution 
T(h – p) is normalised too, implying that  
 

 
 

h

Row 

total
Q(p)

–7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7

T(h) 0.020 0.045 0.110 0.210 0.320 0.235 0.060

Q(p)

p

5 0.000 0.000

4 0.020 0.000 0.002 0.002 0.004 0.006 0.005 0.001 0.020

3 0.045 0.001 0.002 0.005 0.009 0.014 0.011 0.003 0.045

2 0.110 0.003 0.005 0.012 0.023 0.035 0.026 0.006 0.110

1 0.210 0.004 0.009 0.023 0.044 0.067 0.05 0.013 0.210

0 0.320 0.006 0.014 0.035 0.068 0.103 0.075 0.019 0.320

–1 0.235 0.005 0.011 0.026 0.049 0.075 0.055 0.014 0.235

–2 0.060 0.001 0.002 0.007 0.013 0.019 0.014 0.004 0.060

–3 0.000 0.000

Column total r(h) 0.000 0.001 0.007 0.024 0.057 0.115 0.186 0.220 0.186 0.115 0.057 0.024 0.007 0.001 0.000 1.000

 ∑ 
h

Q  ( p) T  (h – p)  =  Q  ( p) ∑ 
h

T  (h – p) 

 ∑ 
h

T  (h – p)  =  1

 ∑ 
h

Q  ( p) T  (h – p) 
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from which 
 

 
 
The row totals in Table 6 therefore show the values of the special re-mark 
distribution Q(p) = T(– p) for each value of p, as verified by Table 3. 
 
The column totals, which represent a summation over all values of p for each 
value of h, give successive values of                              
  
 

 
 
This is the convolution Q(p) ✻ T(p) = T(– p) ✻ T(p), and so the column totals 
give the numerical values of the ordinary re-mark distribution r(h), as shown 
by the histogram in Figure 18. 
 

Some properties of the ordinary re-mark distribution 
r(h) 

 
Suppose that a script is given a re-mark m* = m† + h which is a member of the 
generic panel distribution of median Mp = m† + p. The probability that the 
re-mark m* is any one of the N + 1 marks associated with that specific generic 
panel distribution may be determined by calculating the total number of 
marks m* associated with the corresponding value of Mp, as given by summing 
the product Q(p) T(h – p) over all possible values of h for any given value of 
p, as exemplified by the shaded area in Figure 19 corresponding to p = 1:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 ∑ 
h

Q  ( p) T  (h – p)  =  Q  ( p)  =  T  (– p)

 ∑ 
p

Q  ( p) T  (h – p)   =   ∑ 
p

T  (– p) T  (h – p)  =  r(h) 
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Figure 19: The probability that a script marked m† will be re-marked m* by 
an ordinary examiner, where m* is any mark associated with the generic 
panel distribution for p = 1, with median M1 
 
 
 
 
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The shaded area measures the total number of marks associated with the 
generic empirical distribution for p = 1, the generic panel distribution of 
median median M1 = m + 1; this is also a measure of the probability that the 
given mark m† is associated with the median M1. The area associated with 
any median Mp may be computed by summing the distribution Q(p) T(h – p) 
over all possible values of h for a given value of p. 
 
Mathematically, the shaded area in Figure 17 is given by the expression  

 

 
 

in which the parameter p is a constant, for example p = 1 as shown in Figure 
19. 
 
Since the distribution T(h – p) is normalised, the summation over all possible 
values of h must equal 1, and so the probability that any mark h is a member 
of the empirical distribution associated with the median Mp is given by  

 

 ∑ 
h

Q  ( p) T  (h – p)  =  Q  ( p) ∑ 
h

T  (h – p)
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This is the corresponding value of Q(p), the script’s special re-mark 

distribution. The summation over h runs, in principle, from h =  –  to                   

h =  + , but in practice from hmin  to hmax. 
 

This result may also be derived directly from the convolution 
function                       .  
 
For a script associated with the generic empirical distribution T(h – p), the 
median Mp  of that distribution represents the ‘right’ mark as would be given 
if the script were re-marked by a senior examiner. Mathematically, the single 
mark Mp  can be expressed by the Dirac δ-function δ (h – Mp), which takes the 
value of 1 when h = Mp, and the value of 0 for all other values of h (see page 
33 here). The distribution T(h – p) may therefore be replaced by the Dirac      
δ-function δ(h – Mp), and so the convolution becomes 
 
 

                  =  Q (p) δ (h – Mp)  =  Q (p) 
 
 
giving the result Q(p), as before. 
 
The total area under the r(h) curve is given by 
 

 
 
Reversing the order of the summations gives 
 

 
 
from which 
 

 
 
Since the two distributions Q(p) and T(h – p) are each normalised 
 

 
 

 ∑ 
h

Q  ( p) T  (h – p)  =  Q  ( p) ∑ 
h

T  (h – p)  =  Q  ( p)

 ∑ 
h

r(h)  =  ∑ 
h

 ∑ 
p

Q  ( p) T  (h – p)
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 ∑ 
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r(h)  =  ∑ 
p

Q  ( p) ∑ 
h

T  (h – p)  

 ∑ 
p

Q  ( p)  = ∑ 
h

T  (h – p)  =  1

 ∑ 
h

Q  ( p) T  (h – p)

 ∑ 
h

Q  ( p) T  (h – p)

https://www.roe.ac.uk/japwww/teaching/fourier/fourier1415.pdf
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from which 
 

 
 
so verifying that the function r(h) is, as expected, normalised, as verified by 
the sum in the bottom right-hand cell of Table 5. Also, since in practice the 
summation over the 2N + 1 values of h is from hmin  to hmax, this implies that it 
is virtually certain that any re-mark m*  is within this range, as shown in 
Figure 13. 
 
  

 ∑ 
h

r(h)  =  1
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Index of mathematical symbols 
 
 
f  One-half of the end-to-end range 2N of the ordinary re-mark 

distribution r(h). 
 
h  The number of marks between an original mark m and a re-

mark m* such that m* = m + h. 
 
hmax   The maximum value of the parameter h for which the 

ordinary re-mark distribution r(h) is non-zero. The end-to-
end range of r(h) is the difference hmax  – hmin = 2N = 2f. 

 
hmin   The minimum value of the parameter h for which the 

ordinary re-mark distribution r(h) is non-zero. The end-to-
end range of r(h) is the difference hmax  – hmin = 2N = 2f. 

 
m  A first mark given by a single examiner to a single script. 
 
m'   An alternative first mark given by a single examiner to a 

single script. 
 
m*  A fair re-mark given by a single ordinary examiner to a script 

originally marked m. 
 
m*  A fair re-mark given by a single senior examiner to a script 

originally marked m. 
 
m†  The specific mark m as given to a particular script, against 

which, for example, a general re-mark m* may be compared. 
 
M  The mode of any distribution. 
 
M  The median of any distribution. 
 
Mp  For an examination characterised by a generic panel 

distribution T(n) of end-to-end range N, any script given a 
mark m† is associated with N + 1 generic panel distributions, 
each of median Mp = m† + p, where p can take any integer 
value from pmin =  – nmax  to pmax =  – nmin, including 0. 

 
M†  The median of the particular individual panel distribution 

t(m) with which the mark m, given by a single examiner to a 
specific script, is associated.    

 

M  The mean of any distribution. 
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n  The number of marks by which the mark m given to any script 
by a single marker is greater than the median M† of the 
generic panel distribution T(n) of which that mark is a 
member, such that m = M† + n. 

 

nmax   The maximum value of the parameter n for which the generic 
panel distribution T(n) is non-zero. The end-to-end range of 
T(n) is the difference nmax  – nmin = N; also, nmax  = – pmin. 

 
nmin   The minimum value of the parameter n for which the generic 

panel distribution T(n) is non-zero. The end-to-end range of 
T(n) is the difference nmax  – nmin = N; also, nmin  = – pmax. 

 
N  The end-to-end range nmax  – nmin = pmax  – pmin of both the 

generic panel distribution T(n) and also the special re-mark 
distribution Q(p). Also, one-half of the end-to-end range     
hmax  – hmin  of the ordinary re-mark distribution r(h). 

 
Q(p)   The special re-mark distribution, defining the probability 

that a script, originally marked m†, will be re-marked m* by 
a senior examiner such that m* = m† + p. The distribution 

Q(p) is also the distribution of medians Mp. The end-to-end 
range of this distribution is N marks, the same as the end-to-
end range of the generic panel distribution T(n), and one-
half of the end-to-end range of the ordinary re-mark 
distribution r(h). The distribution Q(p) is normalised so that 
the sum 

 

 
 

p  The number of marks between an original mark m† and a re-
mark m* by a senior examiner such that m* = m† + p, as 
associated with the special re-mark distribution Q(p). The 
parameter p also defines the number of marks between an 
original mark m† and the median Mp of one of the N + 1 
generic panel distributions of which the original mark m† is a 
member, such that  Mp = m† + p. 

 

pmax   The maximum value of the parameter p for which the special 
re-mark distribution Q(p) is non-zero. The end-to-end range 
of Q(p) is the difference pmax  – pmin = N; also, pmax  = – nmin. 

 
pmin   The minimum value of the parameter p for which the special 

re-mark distribution Q(p) is non-zero. The end-to-end range 
of Q(p) is the difference pmax  – pmin = N; also, pmin  = – nmax. 

 

 

 ∑ 
p

Q  ( p)  =  1
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r(h)                    The ordinary re-mark distribution, defining the probability 
that a script, originally marked m, will be re-marked m* by 
an ordinary examiner such that m* = m† + h. The end-to-end 
range of this distribution is 2N marks, twice the end-to-end 
range of the end-to-end range of both the special re-mark 
distribution Q(p) and the generic panel distribution T(n). The 
distribution r(h) is normalised so that the sum 

 

 
 
 

t(m)  The individual panel distribution, this being the probability 
distribution resulting from the marks m given by a panel of 
examiners to one specific script. The distribution t(m) is 
normalised so that the sum 

 

 
 
 
T(n)  The generic panel distribution, formed by aggregating a 

sample of individual panel distributions t(m), so determining 
a generic shape which can apply to all submissions within an 
examination. T(n) has a median M = 0. The end-to-end range 
of this distribution is N marks, the same as the end-to-end 
range of the special re-mark distribution Q(p), and one-half 
of the end-to-end range of the ordinary re-mark distribution 
r(h). The distribution T(n) is normalised so that the sum 

 

 
 
δ(h – Mp)  The Dirac δ-function, which has the value of 1 when h = Mp, 

and the value of 0 for all other values of h. 
 
 
 
 
 
 
 
 

 ∑ 
h

r(h)  =  1

 ∑ 
m

t(m)  =  1  

 ∑ 
n

T (n)  =  1  
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